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a b s t r a c t

In this paper we present a model for computerized adaptive practice and monitoring. This model is used
in the Maths Garden, a web-based monitoring system, which includes a challenging web environment
for children to practice arithmetic. Using a new item response model based on the Elo (1978) rating
system and an explicit scoring rule, estimates of the ability of persons and the difficulty of items are
updated with every answered item, allowing for on the fly item calibration. In the scoring rule both
accuracy and response time are accounted for. Items are sampled with a mean success probability of .75,
making the tasks challenging yet not too difficult. In a period of ten months our sample of 3648 children
completed over 3.5 million arithmetic problems. The children completed about 33% of these problems
outside school hours. Results show better measurement precision, high validity and reliability, high pupil
satisfaction, and many interesting options for monitoring progress, diagnosing errors and analyzing
development.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we present a computerized adaptive practice (CAP) system for monitoring arithmetic in primary education: the Maths
Garden. The Maths Garden1 is a web-based computer adaptive practice and monitoring system based on weekly measurements. In recent
years theMaths ability of Dutch students has beenwidely debated. This is mainly due to the results of the National Periodical Education Polls
(PPON). These results show that few children reach the required Maths level at the end of their primary education (Kraemer, Janssen, Van
der Schoot, & Hemker, 2005). Based on these findings a parliamentary inquiry into Dutch education was initiated. Both the committee
“Dijsselbloem” (2008) and the expert group “Doorlopende Leerlijnen” (2008) recommended several improvements to the Dutch educa-
tion system in general and Maths education in particular. Recommendations included the provision of more time to practice and maintain
basic Maths skills, more efficient and effective measurement in education and the use of these measurements results to improve the ability
of individual students, the classroom and education in general. These recommendations are also supported by Fullan (2006) who claimed
that acting on data is critical for learning from experience.

1.1. Combining practice and measurement

In the light of these recommendations we propose to combine practice and measurement in a playful manner using computerized
educational games. We expect that in the near future children will increasingly use mini computers and handheld devices to do their daily
exercises in arithmetic, spelling, and other subjects. The use of computers have two main advantages. First, the input can be analyzed
automatically and feedback can be given immediately which will free teachers from checking and correcting the children’s exercise books.
The recorded and automatically analyzed data can provide teachers with detailed information on children’s progress and the errors they
make. Teachers can use this information to optimize individual instruction. The information concerning the child’s progress and abilities,
which is accumulated over time, may ultimately obviate the need to conduct tests and examinations. Second, by using computers it is
erg).
sed by more than 150 schools. The English version MathsGarden.com started in the summer of 2010.
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possible to let children practice at their individual ability level. Research on the development of expertise performance has shown that
people do improve their performance considerably if they regularly do specific exercises that are adjusted to their ability level and include
immediate feedback. In the development of the Maths Garden we follow these ideas developed in sports and expertise training, especially
the idea of deliberate practice (Ericsson, 2006, pp. 683–703).

1.2. Three problems of CAT

To implement individualized practice, we apply the technique of computer adaptive testing (Van der Linden & Glas, 2000; Wainer et al.,
2000). Computer adaptive testing (CAT) is based on item response theory (IRT). This theory consists of statistical models that relate item
responses to the (latent) abilities that the items measure (Lord & Novick, 1968). A large collection of item response models is available, but
these are all basically variations on the simplest model, i.e., the one-parameter logistic (1PL) model or Rasch model (Rasch, 1960). In the
Rasch model the probability of a correct or affirmative answer is a logistic function of the difference between the ability of the subject and
the difficulty of the item. In the two-parameter logistic model, the difference is weighted by an item discrimination parameter, which has
a high value when an item discriminates well between low and high ability subjects. Item response models can be used for equating tests, to
detect and study differential item functioning (bias) and to develop computer adaptive tests (Van der Linden and Hambelton,1997). The idea
of CAT is to determine the ability level of a person dynamically. In CAT, item administration depends on the subject’s previous responses. If
the preceding item is answered correctly (incorrectly), a more (less) difficult item is presented. Hence, each person is presented a test
tailored to his or her ability. Using CAT, test length can be shortened up to 50% (Eggen & Verschoor, 2006). Originally, CAT was developed for
measurement only. Our aim to combine practice and measurement raises several novel issues. We distinguish the following three issues.

First, in standard CAT the parameters of the items, especially the difficulty, have to be known in advance to test adaptively. Items
therefore have to be “pre-calibrated” before they can be used in real test situations. This means that a large representative sample of the
population has to have answered the items in the item bank to provide the information for item calibration. The difficulty of the items is
determined using the data of this sample. This method is obviously time consuming and costly, especially as the calibration has to be carried
out repeatedly (e.g. every few years) to acquire accurate norm referenced item parameters.

Second, CAT operates most effectively if the difficulty level of administered items equals the ability estimate of the person. The prob-
ability of answering such items correctly is .5. However, for most children andmany adults the success rate associated with a .5 probability is
experienced as discouraging. Research by Eggen & Verschoor (2006) showed that increasing this probability to above .7 greatly reduces
measurement precision. Given a .7 probability, more items need to be administered to obtain an accurate estimate of person ability. This
requirement reduces the efficiency of computer adaptive testing.

The third problem concerns a testing problem that applies to psychological and educational measurement in general, namely, the trade-off
between speed and accuracy.Without explicit instructions, participants in tests and experiments are free to balance speed and accuracy as they
wish. Consequently the trade-off between speed and accuracy can be a source of large individual differences. The current solution in psycho-
metrics (Vander Linden,2007) andexperimental psychology (Ratcliff&Rouder,1998;Vandekerckhove&Tuerlinckx, 2008) is to estimateperson
parameters involved in this trade-off on the basis of the data. However, this procedure requires large amounts of high quality data.

1.3. New CAT

We developed an extended CAT approach to solve these problems. This Computer Adaptive Practice (CAP) system provides the basis of
theMaths Garden. The CAP system includes the following two innovations. First, we have applied a new estimationmethod based on the Elo
(1978) rating system (ERS) developed for chess competitions. The ERS allows for on the fly estimation of item difficulty and person ability
parameters. With thismethod, pre-testing is no longer required. Second, we have used an explicit scoring rule for speed and accuracy, which
is known to the subject during the test. Inclusion of speed in the scoring has the advantage that we acquire more information about ability.
Research by Van der Maas & Wagenmakers (2005) showed that in the response to easy chess items there is a strong negative relation
between response time and ability. Subjects tend to answer easy items correctly, but more advanced subjects answer them more quickly.
Third, by integrating response time in the estimation of ability, we can decrease the difficulty of administered items with less loss of
measurement precision than noted by Eggen & Verschoor (2006). In additionwe expect the higher success rate to increase themotivation of
children during the test. In the Method sectionwe describe the Maths Garden, the Elo algorithm and the new scoring rule in more detail. In
the results section of this paper we test the working of Maths Garden. We present evidence for high validity and reliability of ability and
difficulty estimation, the motivational value of the Maths Garden and its usefulness as a diagnostic and monitoring instrument.

2. Methods

2.1. Participants

A total of 35 primary schools, eight remedial teachers and 32 families participated in this study, comprising of N ¼ 3648 active
participants. Also 334 aspiring kindergarten pupils joined the Maths Garden. In the time period from August 2008 to early June 2009 more
than 3.5 million arithmetic problems were answered in our sample. In addition to the responses we registered the gender, age and grade of
the participants. Table 1 shows the mean age with standard deviation and the amount of children for each grade.

2.2. Materials

The main measurement tool used in this study is the web-based practice and monitoring system we developed: Maths Garden. The
student interface consists of a garden containing distinct flowerbeds, representing, among others, the four domains: addition, subtraction,
multiplication and division (Fig. 1a) on which we focus in this paper. The size of the flowers represents the Maths ability of the student. By
clicking on a flowerbed the Maths game is started for a specific domain and the student can start playing.



Table 1
Age, gender and N per grade.

Grade Age category N Age xðs2Þ %M(F)

kindergarten 4-5 103 4.32(0.51) 50.49(49.51)
kindergarten 5-6 231 5.45(0.51) 47.19(52.81)
1 6-7 529 6.61(0.51) 53.50(46.50)
2 7-8 681 7.69(0.54) 55.21(44.79)
3 8-9 526 8.68(0.79) 47.91(52.09)
4 9-10 513 9.70(0.61) 47.24(52.76)
5 10-11 574 10.79(0.60) 49.48(50.52)
6 11-12 416 11.80(0.57) 50(50)
Secondary Education 12 < 75 13.33(3.94) 64(36)

Fig. 1. The main Maths Garden interface and an addition item.
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The visual interface of the Maths task consists of a Maths question, six answer options, a coin bag, a question mark, a stop sign, and an
elapsing coin bar which indicates the time left on the item (Fig. 1b). The game rules are intuitive and therefore only require minimal
description on the website. Students gain points (coins), displayed at the bottom of the game interface, by answering items correctly and
lose coins when answering incorrectly. With every item a total amount of twenty coins, corresponding to themaximum time in seconds, can
bewon or lost. Every second one coin disappears. The remaining coins are added to the coin bag if the item has been solved correctly and are
subtracted if solved incorrectly. If the time limit has expired or the question mark has been clicked, no coins are lost or won. The rationale of
this scoring rule is explained in the psychometrics section. A session consists of fifteen items after which theMaths game terminates and the
student is returned to his or her garden. The flowers will start growing according to the progression that has been made. Students are
motivated by two reward systems. Good performance is rewarded by growing flowers and virtual coins2. The Maths Garden website
contains a dedicated area, the prize cabinet, where virtual prizes can be bought with the earned coins. Another way students are motivated
to continue playing in the Maths Garden is to have the flowerbeds wither if the student does not play. Withering worsens over time and can
only be undone by completing a new session of 15 items.

The four domains, addition, subtraction, multiplication and division, contain 738, 723, 659 and 664 items, respectively. The items in the
four domains cover the curriculum in primary education. They vary from easy (e.g., 3 þ 4 with response options: 7, 8, 6, 1, 9 and 12) to
difficult (e.g., 7,34þ 311,4 with response options: 318,74; 318,38; 318,47; 317,74; 319,74 and 318,34). The response options are selected to be
informative distracters. Variables measured by the task are response time, the given answer, the correctness (0, 1) and a timestamp at
administration.

We studied the validity of the data by comparing the ability estimate, measured with the Maths Garden, with students’ scores on the
Maths tests from the pupil monitoring system (Janssen & Engelen, 2002) of the National Institute for Educational Measurements (CITO). In
the CITOmonitoring systemMaths tests are administered twice a year frommid grade 1 until mid grade 6. These tests assess the knowledge
and skills that are being taught in these grades. The tests contain both open-ended and forced-choice items. Students’ scores on the Maths
test (the total of correct answers) are transformed to a score on a norm-referenced general Maths ability scale. This allows one to compare
students’ scores from different grades using one scale.
2.3. Psychometrics

2.3.1. Elo rating system
In chess the Elo (1978) rating system (ERS) is used to estimate the relative ability of a player. The ERS is a dynamic paired comparison

model which is mathematically closely related to the Rasch IRT model (Batchelder & Bershad, 1979). Initially chess players are given
a provisional ability rating q which is incrementally updated (see equation (1)) based on match results (in chess 0, 0.5 and 1, for loss, draw
and win outcomes). The updated ability estimate bq (sgnified by the hat) depends on the weighted difference in match result S and expected
match result E(S). The expected match result is a function of the difference between the ability estimates of both player j and k preceding the
match and expresses the probability of winning (see equation (2)):

bqj ¼ qj þ K
�
Sj � E

�
Sj
��
;

bqk ¼ qk þ KðSk � EðSkÞÞ; ð1Þ
2 Because of the adaptive nature of the test, every student has roughly the same percentage correct. Hence the number of coins won reflects only how often a student plays
and not his arithmetic level.
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E
�
Sj
� ¼ 1

1þ 10ðqj�qkÞ=400: (2)

The K factor in equation (1) weights the impact of the deviation from expectation on the new ability estimate. This value essentially
determines the rate at which q can change over matches. In the standard ERS the K factor is constant. Glickman (1995) argued that not all
ability ratings are estimated accurately by the ERS update function (eq. (1)). Inaccuracies mostly occur when players are new or have not
played for an extended period of time, resulting in much uncertainty in their ability rating q. Glickman proposed to let the K factor reflect the
uncertainty in ability estimates bymaking it a function of time and playing frequency. If there is little uncertainty, the K factor for recent and
frequent players will be low. If there is much uncertainty the K factor will be high.

2.3.2. Computer adaptive practice
Our suggestion for creating an on the fly item calibrating and computer adaptive practice (CAP) system is to replace one player in the Elo

system by an item.3 Solving an item correctly is interpreted as winning thematch against the item. The updating function in equation (1) can
be rewritten to equation (3) for updating player and item ratings:

bqj ¼ qj þ Kj
�
Sij � E

�
Sij
��
;bbi ¼ bi þ Ki

�
E
�
Sij
�� Sij

�
;

(3)

where bi is the difficulty estimate of the item and Sij and E(Sij) are the score and expected probability of winning for person j on item i.
Following Glickman, the K factor in our CAP system is a function of the rating uncertainty U of the player and the item (eq. (4)):

Kj ¼ K
�
1þ KþUj � K�Ui

�
;

Ki ¼ K
�
1þ KþUi � K�Uj

�
;

(4)

where K ¼ 0.0075 is the default value when there is no uncertainty and Kþ ¼ 4 and K- ¼ 0.5 are the weights for the rating uncertainty for
person j and item i. These values determine the rate at which q and b can change following each item response. These values have been
determined through extensive simulations.

The uncertainty U depends on both recency and frequency. Equation (5) combines these opposite effects on uncertainty. We apply the
same equation to items and players, with provisional uncertainty of U ¼ 1 and 0 � U � 1:

bU ¼ U � 1
40

þ 1
30

D: (5)

We assume that uncertainty for players and items decreases after every administration and increases with time. Therefore uncertainty
reduces to zero after 40 administrations and conversely increases to the maximum of 1 after 30 days D of not playing.

2.3.3. High speed, high stakes
We incorporate speed by using the scoring rule (shown in eq. (6)) for speed and accuracy, which we call the high speed high stakes

(HSHS) scoring rule (Maris & Van der Maas, Submitted for publication). This rule imposes a speed accuracy trade-off setting on the indi-
vidual. Player j has to respond x in time tij before the time limit di for item i. The score Sij is scaled by the discrimination parameter ai:

Sij ¼
�
2xij � 1

��
aidi � aitij

�
: (6)

In this scoring rule the stakes are high when the subject responds quickly. In case of a correct answer (xij ¼ 1) the score equals the remaining
time. In caseof an incorrect answer (xij¼0) the remaining time ismultipliedby�1. Thusaquick incorrect answer leads to a largenegative score.
This scoring rule is depicted in Fig. 2. The scoring rule is expected to minimize guessing by encouraging deliberate and thoughtful responses.

Maris & Van der Maas (Submitted for publication) derived an IRT model that conforms to the HSHS scoring rule. The expected score
(eq. (7)) can be inferred from this model. E(Sij) is based on the ability estimate of the person qj, the difficulty estimate of the item bi, the time
limit di and discrimination parameter ai for that item. In theMaths Garden, we set ai¼ 1/di, such that the effective discrimination equals that
of the 1PL model:

E
�
Sij
� ¼ aidi

e2aidiðqj�biÞ þ 1

e2aidiðqj�biÞ � 1
� 1
qj � bi

: (7)

We use the HSHS score Sij (eq. (6)) and the corresponding expected score E(Sij) (eq. (7)) in our modified Elo update function (eq. (3)).

2.3.4. Item selection
Items are selected for which the mean probability of answering correctly is about .75. Repetition of the same items is restricted, by

ensuring that items are reused only after 20 other items have been answered. A new target bt is selected by using:

bt ¼ bqj þ ln
P

1� P
; (8)

where probability P is randomly drawn from a normal distribution w(0.75,0.1) and restricted such that 0.5 < P < 1. For administration the
nearest available item is selected by: minijbi-btj.
3 This approach has, for many years, successfully been applied in an online chess testing system on the Chess Tactics Server (chess.emrald.net).

http://chess.emrald.net
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2.4. Procedure

Although the Maths Garden started out as a pilot project, only available to a limited amount of schools in the Netherlands, the website
later on became available for a larger audience. In the pilot period the students received a login account and an instruction from their
teacher. In this instruction, teachers explained the scoring rule of the games and students were told that they could click on the question
mark if they did not know the answer. After this, students could start playing on their own. Teachers were told that the first two sessions
should be played at school. After this, students were also allowed to play at home, they were also instructed to play by themselves. After the
pilot period the Maths Garden also became available to remedial teachers and families. The remedial teachers and families were not
instructed on the frequency of playing. Themanuals on how to use theMaths Gardenwere all available on thewebsite but the scoring rule of
the games was not explicitly described to the children on the website.
3. Results

3.1. Measurement precision

To testwhether the incorporation of response time in the estimation of ability allows us to lower the difficulty of administered itemswith
less loss of measurement precision, we conducted a simulation study. We compared our results to those of Eggen and Verschoor (2006). In
a simulation study, Eggen & Verschoor, showed4 an increasing (negative) bias (Fig. 3: left) and a drop inmeasurement precision (Fig. 4: right)
when selecting easy items in a standard CAT using theweightedmaximum likelihood estimator (WML) and the one-parameter logistic (1PL)
model. Average bias was computed by: 1=n

Pðbqi � qiÞ and measurement precisionwas quantified by calculating the mean standard error of
estimation seðbqÞ using the information function for the 1PL model.

In our simulationwe used the Elo update function to estimate ability and difficulty, utilizing: a) accuracy data with the 1PL model and b)
accuracy and response time data using the HSHS model. As in the study by Eggen & Verschoor, our item bank consisted of 300 items with
normally distributed bwN(0,1) difficulties andwe also sampled 4000 abilities from a normal distribution qwN(0,1). The CAP algorithm starts
with an item of intermediate difficulty �0.5<b < 0.5 and terminates after 40 items. As a starting point for ability we selected a random
ability from a normal distribution bwN(0,1). We compared our Elo based HSHS model, at different desired success probabilities, to Eggen &
Verschoor’s 1PL model using standard CAT. Eggen & Verschoor investigated success probabilities up to .75.

With regard to bias it can be concluded that the Elo estimation method performs slightly worse with accuracy data only (Fig. 3: left:
Eloþ1PL), but outperforms Eggen & Verschoor ’s standard CAT method, when RT’s are included (Fig. 3: left: Elo þ HSHS).

With regard to the standard error of estimation we also compared our two Elo methods to the theoretical maximum information for the
1PL model. We calculated the maximum information (Fig. 3: right: Max Info.) with equation (9):

se
�bq� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Na2i PiðqÞð1� PiðqÞÞ

q
; (9)

where a ¼ 1 is the discrimination parameter, N ¼ 40 is the number of items, and Pi(q) is the desired probability correct. As can be seen in
(Fig. 3: right: Max info.), when the probability of answering correctly assumes large values (x-axis), the theoretical minimum SE (eq. (9)) for
the 1PLmodel increases exponentially (y-axis). For the standard error of estimation (Fig. 3: right) we calculated the standard deviation of the
difference in simulated abilities q and estimated abilities bq. This method of calculation is simpler, yet comparablewith the procedure used by
Eggen & Verschoor for calculating the standard error of estimation.

The SE of the Elo estimation method using only accuracy data (Fig. 3: right: Eloþ1PL) is largest for almost all probability levels. This is to
be expected as thismethod is statistically inferior to theWMLmethod used by Eggen& Verschoor. Up to the probability level of about .69 the
SE using the HSHS Elo method (Fig. 3: right: EloþHSHS) is larger than the SE found in the Eggen & Verschoor simulation. However, at higher
probability levels, especially compared to our target of .75, the SE is considerably lower. At probability levels higher than about .78 the SE
even drops below the theoretical maximum information (Fig. 3: left: Max info.) for the 1PL model. This demonstrates that incorporating
response times results in much better measurement precision when using easy items.
4 Table 1 in Eggen and Verschoor (2006).



Fig 3. BIAS and SE for different computer adaptive methods at different values of the expected probability correct.
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3.2. Validity

To assess the validity of the Maths Garden measurements, the ratings of the students were compared to their scores at the norm-
referenced general Maths ability scale of the pupil monitoring systems of CITO (Janssen & Engelen, 2002). The correlations between these
two measures, which serve as a measure of convergent validity, ranged from .78 to .84 for the four domains addition, subtraction, multi-
plication and division. These correlations were based on a subset of our sample. CITO scores where available for N¼ 964 participants. To put
these correlations into perspective we looked at the correlation between two subsequent CITO scores. The correlation between CITO mid
year and end of the year 2007–2008 was .95. This indicates that our correlations can be considered fairly high. Fig. 4 displays the relation
between test scores. The numbers indicate the regression line for each grade.

We also studied the validity by comparing the mean ability ratings of children in different grades. We expected a positive relation
between grade and ability. Fig. 5 shows the average ability rating for each grade and domain. As expected, children in older age groups had
a higher rating than children in younger age groups. In all four domains, there is an overall significant effect of grade:
addition Fð5;1456Þ ¼ 1091:4; p < :01;u2 ¼ :78; subtraction Fð5;1363Þ ¼ 780:5; p < :01;u2 ¼ :74; multiplication Fð5;1215Þ ¼ 409:6;
p < :01;u2 ¼ :62; and Fð5;973Þ ¼ 223:31; p < :01;u2 ¼ :53 for division. Levene’s tests show differences in variances for the domains
Fig. 4. Correlation between Maths Garden rating for the domains addition, subtraction, multiplication and division and the norm referenced CITO scores (mid 2008). Included are
regression lines for each grade indicated by grade numbers.
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multiplication and division. However, the non-parametric Kruskal–Wallis tests also show significant differences for these domains: c2ð5Þ ¼
753:28; p < :01 for multiplication and c2ð5Þ ¼ 505:17; p < :01 for division. For all domains, post hoc analyses show significant differences
between all grades, except for the differences between grades five and six.

3.3. Reliability

One way to assess reliability is to compare children’s ratings across domains. Since the domains involve many related operations we
expect high correlations between them. The correlations between the four domains, addition, subtraction, multiplication and division, vary
between .67 and .88, all significant at p < .01, indicating fairly high correlations. Another relatively simple way to assess the reliability of the
Maths Garden is to construct parallel tests. We can compare item difficulty b’s of so-called mirrored items (e.g. 7 þ4, 4 þ 7 and 2 � 4, 4� 2)
for the domain of addition (N ¼ 48) and multiplication (N ¼ 81). Mirrored items should have very similar b’s. Fig. 6 shows the correlation of
the mirrored item b’s for the domains addition andmultiplication. These correlations are .88 and .98 (p< .01), respectively, indicating a high
reliability of these item sets.

Besides difficulty b’s, we can also compute the discriminatory power of items, which indicates howwell the item discriminates low from
high ability subjects. We estimated these so called a-parameters by using a logistic regression analysis on the accuracy responses predicted
by the difference in rating between item and respondent. As in the preceding analysis, we compared the discriminatory power between
mirrored items. The scatter plots in Fig. 7 show rather high significant (p < .01) positive correlations. The correlations for addition and
multiplication are .74 and .71.

As a final test of reliability, we investigated the stability of the difficulty ratings b. A high correlation between b values of items at two time
points far apart indicates high reliability. Therefore we would expect a stable item bank to correlate highly over time. We first looked at the
correlation between the item b ratings, as they were set at the start of the project (week 36) and the item ratings in all subsequent weeks. In
Fig. 8, this correlation is shown by the solid line. Clearly, the initial ratings, set on the basis of an analysis of Maths materials used by the
schools, were quite good, as the correlation between initial ratings and the ratings after 40 weeks is still .85. Secondly, we also correlated
established item ratings in week 44 with all item ratings in subsequent weeks (dotted line). This shows that these established ratings are
very stable as the correlations in 32 weeks all stay above .95.

3.4. Item reuse

As a result of the longitudinal nature of the Maths Garden system, items are presented to the same child more than once. Although the
system ensures that at least 20 other items are administered before an item is reused, this reuse may present a threat to the assumption of
local independence (e.g. the response to an item must not depend on the previous response to the same item). To test this, we performed
regression analysis with both the number of items and the amount of time between two presentations of the same item to the same child as
predictors for the child’s performance on that item. The child’s performance was measured by subtracting his expected score E(Si) from the
actual score Si. If there is an item-specific learning effect, any child that encounters an item for the second time is likely to have a higher than
expected score for that item.We selected pairs of data points that represented subsequent presentations of the same item to the same child.
We selected the data so that no child contributed more than one pair of data points, resulting in N ¼ 478 pairs of data points. Because
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Fig. 6. Scatter plot of difficulty b’s of mirrored items. Included are some examples indicated with black dots.
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Fig. 7. Scatter plot of discriminatory a-parameters for mirrored items.

Fig. 8. Stability of items ratings for initial ratings (solid line) and established ratings after 2 months (dotted line). The x-axis displays week numbers (v ¼ vacation). Correlations are
computed over active (played) items in each week (Ni ¼ amount of administered items).
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item-specific learning effects are logicallymore likely to occur if there is a small amount of time between two presentations of the same item
to the same child, we removed 90 data points with more than 30 minutes between the two presentations of the item. A regression analysis
with this dataset shows nomain effect for either the number of items, or the amount of time between two presentations of the same item to
the same child: number of items, R2 < :001; Fð1;476Þ ¼ 0:39; p ¼ :53 and amount of time, R2 < :001; Fð1;476Þ ¼ 0:0072; p ¼ :93.

3.5. Maths Garden aims

In order to keep childrenmotivated, items were sampled so that children solved about 75% of the items successfully. However, in the first
few months we imposed a success rate of 70%. Fig. 9a shows the proportion of correctly answered items per grade and domain. Only the
results of the children who answered more than fifteen items were included in the graph. The graphs show that the proportion of correctly
answered items varied between .6 and .8 for most children. The proportion correct seems to be somewhat lower for subtraction and lower
still for multiplication and division. At the start of this project, the domains addition and subtractionwere briefly available for the lower age
groups. This resulted in a lot of question mark use in these domains. To counter this unwanted effect we made the availability of these
domains dependent on the proficiency on addition and subtraction. In total, the amount of questionmark use in theMaths games was about
7.3%. Filtering out the question mark responses (Fig. 9b) results in considerably higher proportions correct.

One of the aims of the Maths Garden was that it should be a challenging web environment for children of all competency levels. The
usage statistics can answer the question whether children are motivated to play the Maths games. They provide an indication of how
attractive and challenging the children found the Maths games. It is possible that children visit the Maths Garden site mainly because their
teachers told them to. To assess how intrinsically motivated the children were to play the games, we looked at the days and hours that
children played in the Maths Garden. Fig. 10 (top) shows the number of solved arithmetic problems per day of the week and Fig. 10 (bottom)
shows the number of solved items per hour of the day. Not surprisingly, most problems were solved onMonday till Friday and between 9.00
a.m. and 3.00 p.m. However, both graphs also show that a considerable number of problems were solved after school hours and during the
weekends. Actually, 33.2% of all problems were solved outside school hours.

To investigate whether competency had any effect on the motivation, we looked at the relation between ability and playing frequency.
Only data of children who solved 15 or more problems was included to ensure accuracy of the ability estimates. We found only low but
significant (p < .01) correlations between ability level and playing frequency for all domains. The correlations for the domains addition,
subtraction, multiplication and division were, �0.15, �0.12, �0.05, and .09, respectively. The playing frequency does not appear to depend
importantly on the competency level of the children.

3.6. Diagnostic ability

We will briefly demonstrate the diagnostic and tracking ability of the Maths Garden by considering a few examples. Using the high
frequency dataset, wewere able to provide individual and group diagnostics. Fig. 11 shows the percentage of typical errors a given child had



Fig. 9. Proportion correct per grade and domain.
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made (bars) compared to the percentage of these errors made by children of the same grade (solid line). We can see, for instance, that this
childmakes significantly more zero errors (400�200¼ 380), for the domain subtraction than other children in the same grade.We provided
teachers with such graphs for individuals and groups of individuals (e.g. for the whole class).

Detailed analysis of the item difficulties provides us with insight into sources of item difficulty. Some interesting results have emerged.
For example multiplications by 10 or even 100 and one digit numbers (7 � 100) are among the 10% easiest items for this domain. In division
it appears that items of the type nn:n (77:7) are also very easy (again among the 10% easiest items). Straatemeier et al. (submitted) tested
how well all kinds of item effects, previously studied in isolation, predict item difficulty. The combined item effects, such as problem size,
ties and the 5 effect, explained 90% of the variance in the difficulty of simple multiplications items.
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3.7. A window on developmental change

The high frequency measurements combined with the size of the sample, provide unique insights into arithmetic development and
learning trajectories of children. In the Maths Garden, trend analyses are provided to teachers. Fig. 12 shows the progress of a single child
compared to all other children in the same age group. Teachers can use this information to consider interventions. As can be seen in the
graph, this child started out having an average rating and a flat growth curve. By week 45 this child started to acquire the necessary ability
and by week 49 the child was in the top 25% of all children.

At micro level it is even possible to study the learning pattern of one child on a specific item over time. For example, in graph 13 we see
the answers and response times of two children on two items across weeks. In the top graph of Fig. 13 we see an individual who did not
know the answer to the Maths question 9 � 9 and answered with a question mark in about 5 to 10 seconds at the first ten occasions. Then
there were two mistakes where the child joined the two digits instead of multiplying. However, in the next attempt the question was
answered correctly but more time was needed to respond. From this point on the ability level seems sufficient for consistent correct and
speedier answers. The bottom graph of Fig. 13 shows a lucky guess in the first week (third trial) followed by a gradual gain in insight. Half
way week 42 this child started answering correctly more often but with highly varying response times. At the end of week 44 the response
time droped. Note that occasionally errors keep occurring. These examples illustrate the level of detail that is possible in the analysis of
Maths Garden data.
4. Discussion

In this paper we presented and tested a new model for computerized adaptive practice and monitoring. The results concerning the
validity and reliability are promising. The high correlations with the norm referenced CITO scores indicate high criterion validity. The
increase in player ability rating across grades also supports this, although the children in grades 5 and 6 did not seem to differ. This is
probably due to the fact that in the domains we tested no new mental arithmetic techniques are taught in grade 6.

By simulation, we compared measurement precision and measurement bias of CAP to standard CAT. For easy items the use of the HSHS
scoring model, which combines speed and accuracy and the Elo rating system (ERS) resulted in less loss in measurement precision and less
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bias than found in standard CAT estimation. The ERS combined with the 1PL model, using only accuracy data, resulted inworse estimations.
Concerning the items and the item bank, we found that difficulty ratings converge in about eight playing weeks, resulting in consistent
difficulty ratings across time. High reliability is also indicated by the high correlations of the difficulty and discrimination parameters
between sets of mirrored items. We have not found any indication of learning effects caused by the reuse of items, therefore also indicating
the assumption of local independence has been met for reuse of items. However in other learning domains this issue still requires careful
consideration.

The fit statistics for the HSHSmodel are still in development, and are therefore not included in the result section of this paper. Evaluation
of the goodness of fit for IRTmodels is an active area of research, and so far definite solutions are lacking (Embretson & Reise, 2000). Some of
the relevant issues (Hambleton, Swaminathan, & Rogers,1991) concern, the sensitivity of the chi-square fit statistic to sample sizes, technical
issues in the testing of dimensionality (Hattie, 1984, 1985), and the testing of the assumption of local independence. Evaluating the fit of IRT
models is more complicated still in the context of computer adaptive testing, due to the inherent incomplete item-person data matrix. An
alternative approach to comprehensive model fitting consists of checking model assumptions, and establishing reliability and validity
(Hambleton & Swaminathan, 1985). Here we have sufficed with this alternative approach.

We can conclude that children were motivated to play the Maths games. The frequency data demonstrated that children played a lot
outside of school hours. Children with a lower ability in Maths did not play appreciably less, which suggests that they found the Maths
games as motivating as high ability children did. We demonstrated that the Maths Garden has many possibilities as a diagnostic tool. The
error analysis can provide teachers with valuable insight into the kind of errors that individual pupils make. This information can be used to
optimize interventions. The current dataset, consisting of a large number of individual high frequent time series, allows for many further
investigations of difficulty effects (Straatemeier et al., submitted for publication), strategy patterns in mathematical problem solving and
individual learning trajectories. The item ratings also provide insight into what we call informal learning paths. Because of the adaptive item
ratings, we gain an on the fly insight into the difficulty of arithmetic problems. Some items turned out to be unexpectedly easy. For instance,
8 þ 6, 5000 þ 5 and 50 þ 60 were almost equally difficult whereas 8 þ 6 is taught much earlier on in the Dutch curriculum than the other
two addition problems. This kind of information can be used to determine the curriculum (i.e. what is taught) in each grade.

One of the problems with the Elo rating system is the occurrence of rating inflation and deflation (Glickman,1999), which we call drift. In
educational applications, one source of drift is that new young players start with low ratings and stop playing when they leave school with
high ratings. This causes a systematic downwards drift in item rating and, as a consequence, lowers person ratings. This does not seem to
jeopardize the operation of the Maths Garden, since drift influences player and item ratings simultaneously. The main problem lays in the
interpretation of the rating. Rating points cannot be accurately compared following inflation or deflation. Thereforewe present transformed
ratings to teachers and users to prevent interpretation problems. Transformation is conducted by calculating the average probability correct
for a single user on all items in the domain, as shown in equation 10:

P ¼ 1=n
Xn
i¼1

1

1þ e
�a
�bqj�bi

�: (10)

This value is an estimation of the percentage of items in the domain that the user is able to answer correctly. We also reduced drift by
incorporating the rating uncertainty in calculating the K factor, which minimizes the influence of unreliable person and item estimations on
the updating proces. A related issue is the convergence speed. This is the time or number of responses needed to get a stable rating. We set
the rating uncertainty parameters of the K factor, which determine the convergence speed, on the basis of extended testing. A better
approach would perhaps be to estimate the uncertainty based on aberrant response patterns, where unexpected responses are used as an
indication of unreliability.

A last issue concerns the one-dimensionality of the Maths domains. In practice, every test and item bank is expected to violate the
assumption of one-dimensionality to some degree. Thoughwe see no immediate effects on ability estimation the question of how robust the
HSHS Elo algorithm is to violation of this assumption needs further investigation. We also intend to further address the possible individual
differences between children and how the HSHS scoring rule affects their behavior.

In conclusion, Maths Garden meets the requirements we set for the practice and progress monitoring system. It is worth noting that
although the new CAP algorithm is implemented in the domain of Maths, the system can be applied to all kinds of learning domains. In the
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new release of Maths Garden more games, e.g. fractions, have been added and a language garden is in development. Also, the number of
schools using the Maths Garden continues to grow steadily (about 150 in October 2010), yielding about 50 thousand responses per day. We
expect a fast adoption of computers, such as handhelds, minicomputers and tablets, in primary schools in the next 5 years. If children do
their daily exercises in practice and progress monitoring systems using these devices, we expect many benefits for students, teachers and
scientists.
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